Abstract: The present short communication described a new procedure for the reconstruction of the horizontal severely resorbed edentulous maxilla with custom-made deproteinized bovine bone block, fabricated using three-dimensional imaging of the patient and computer-aided design/computer-aided manufacturing (CAD/CAM) technology. The protocol consisted of three phases. In the diagnosis and treatment planning, cone-beam computed tomographic scans of the patient were saved in DICOM (digital imaging and communication in medicine) format, anatomic and prosthetic data were imported into a dedicated diagnostic and medical imaging software, the prosthetic-driven position of the implants, and the graft blocks perfectly adapted to the residual bone structure were virtually planned. In the manufacturing of customized graft blocks, the CAD-CAM technology and the bovine-derived xenohybrid composite bone (SmartBone® on Demand - IBI SA - Industrie Biomediche Insubri SA Switzerland) were used to fabricate the grafts in the exact shape of the 3D planning virtual model. In the surgical and prosthetic procedure, the maxillary ridge augmentation with custom-made blocks and implant-supported full-arch screw-retained rehabilitation were performed. The described protocol offered some advantages when compared to conventional augmentation techniques. The use of deproteinized bovine bone did not require additional surgery for bone harvesting, avoided the risk of donor site morbidity, and provided unlimited biomaterial availability. The customization of the graft blocks reduced the surgical invasiveness, shorting operating times because the manual shaping of the blocks and its adaptation at recipient sites are not necessary and less dependent on the clinician’s skill and experience.


    Access

    Download


    Export, share and cite



    Title :

    Xeno-Hybrid composite scaffold manufactured with CAD/CAM technology for horizontal bone-augmentation in edentulous atrophic maxilla: a short communication



    Publication date :

    2020-01-01



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Xeno : Roman

    Fabrizius, Enrico | GWLB - Gottfried Wilhelm Leibniz Bibliothek | 1999


    Human Maxilla Bone Response to 30^o Oriented Impacts and Comparison with Frontal Bone Impacts

    Bruyere, K. / Bermond, F. / Bouquet, R. et al. | British Library Conference Proceedings | 2000




    Prospects for the application of electrochemical polishing of scaffold samples manufactured by additive technology

    Sergey Adjamskiy / Ganna Kononenko / Rostyslav Podolskyi et al. | DOAJ | 2023

    Free access