Despite the development of new technologies, manual labour still continuous to play a large role within most modern agricultural operations, especially during harvest. Consequently, there is an increasing demand for new machines to reduce labour as a mean to limit costs, while increasing efficiency in a sustainable manner. This thesis concern itself with the design of a mechanism and control system for a robot arm that can substitute workers in logistical operations during strawberry harvest. More specifically, by lifting berry crates onto a robot platform and transporting them from the fields and to the packaging facilities. The robot arm is to be mounted on the platform composing a vehicle- manipulator system. As this thesis is connected to a general research project on agricultural robotics at the Norwegian University of Life Sciences, the chosen platform is the associated field robot Thorvald II. The thesis is divided into two parts, where Part I concerns the mechanical design of the robot arm, while Part II propose a system for controlling the mechanism. The design development process has involved assessments of available solutions before selecting components on the basis of controllability, mechanical properties and costs. The process of selection in Part II is however, based on finding solutions that are compatible with the robot platform’s network (Controller Area Network) and operating system (Robotic Operating System). Part I: Design and Mechanics The design of the robot arm presented in this thesis begun with a preliminary feasibility study conducted by Bjurbeck in September 2016. Following the assessment of this study, the robot arm is designed to have two degrees of freedom operating in the xz-plane. When mounted on the platform, the arm will be free to operate in a 3-dimensional space, as the platform moves in x and y-direction, and rotates around the z-axis. The arm is assembled from two parallel link pairs made from rectangular aluminium tubes, and a revolute and prismatic joint. Both joints are actuated by LinAk LA36 linear electric actuators. The end effector of the arm is a gripper head designed to grasp the handles of the strawberry crate. The gripper head is self-aligning with the crate’s orientation in order to reduce the precision of control needed to envelop and grasp the crate. The frame of the gripper head is made from aluminium angle profiles and sheet metal. A worm drive DC motor actuate the gripper claws via a double link mechanism. Part II: Modeling and Control The geometry of the design presented in Part I is modelled mathematically and the inverse kinematics solved analytically. The kinematics will be used in future implementation of a position control system. Two RoboteQ SDC2160 dual-channel controllers are chosen to control all four actuator mo- tors. The linear actuators are controlled in closed loop position tracking mode with absolute feedback. The gripper motor is controlled in open loop mode with end stop switches detecting the position of the claws. Experiments was conducted to match the controllers with the actuator motors. The experiments revealed firmware issues with the controller. The experiments also affirmed the controller need a script to operate the actuators efficiently. The thesis provides the foundations to build a prototype and write an operating script to test the mechanical design and control system. ; Til tross for den stadige utviklingen av ny teknologi spiller manuelt arbeid fortsatt en stor rolle i moderne landbruk, særlig i innhøsting. På grunn av den store arbeidkraften som trengs er det en stadig større etterspørsel etter nye maskiner som kan redusere behovet for manuelt arbeid for å redusere utgifter og effektivisere gårdsbruk på en bærekraftig måte. Denne masteroppgaven omhandler det mekaniske designet og reguleringssystemet til en robotarm laget for å kunne erstatte arbeidere i oppgaver tilknyttet logistikk ved innhøsting av jordbær. Dette gjøres ved at armen løfter kasser med bær opp på en robotplattform som transporterer kassene fra jordet og til et pakkeri. Robotarmen er da montert oppå plattformen. Siden oppgaven er tilknyttet et forskningsprosjekt i landbruksrobotikk ved Norges miljø- og biovitenskapelige universitet, var det naturlig å velge den universitetets robot Thorvald II som plattform. ; submittedVersion ; M-MPP


    Access

    Download


    Export, share and cite



    Title :

    Design and control of a loader mechanism for the NMBU agricultural robot



    Publication date :

    2017-01-01


    Type of media :

    Theses


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629




    A LOADER FOR AGRICULTURAL TRACTORS

    SCHAGER STAFFAN | European Patent Office | 2018

    Free access

    Loader frame hinging mechanism

    MAO WENTAO / QI GAOPIN / ZHU PENGHUI et al. | European Patent Office | 2024

    Free access

    Loader frame connecting mechanism

    MAO WENTAO / CHEN FANMIN / ZHANG YU'E et al. | European Patent Office | 2024

    Free access

    Loader driving control system and electric loader

    LIU JISHUN / CHEN FANGMING / QIU DEBO et al. | European Patent Office | 2021

    Free access

    Electric loader control method and electric loader

    CHEN JIANYUN / LU HAIFENG / DENG YUEYUE | European Patent Office | 2024

    Free access