This research advances the understanding of jacket-type platform induced local and global erosion and deposition processes for combined wave–current conditions. To this end, a laboratory study was carried out comparing the equilibrium scour depth for two structural designs that are differentiated in the geometrical distance of the structure’s lowest node to the seabed. Measurements of local scour depths over time have been conducted with echo sounding transducers. An empirical approach is proposed to predict the final scour depths as a function of the node distance to the seabed. Additionally, 3D laser scans have been performed to obtain the digital elevation model of the surrounding sediment bed. Novel methodologies were developed to describe and easily compare the relative volume change of the sediment bed per surface area due to structure–seabed interaction, enabling spatial analyses of highly complex erosion and deposition patterns. The seabed sediment mobility around the structure is found to be highly sensitive to a change in node distance. The decrease of the node distance results in a higher erosion depth of sediment underneath the structure of up to 26%, especially for current-dominated conditions, as well as an increased deposition of sediment downstream of the structure over a distance of up to 6.5 times the footprint length. The results of this study highlight the requirement to consider the interaction of the structure with the surrounding seabed within the design process of offshore structures, to mitigate potential impacts on the marine environment stemming from the extensive sediment displacement and increased sediment mobility.


    Access

    Download


    Export, share and cite



    Title :

    Influence of Structural Elements on the Spatial Sediment Displacement around a Jacket-Type Offshore Foundation


    Contributors:

    Publication date :

    2020-06-09


    Remarks:

    Water, 2020, 12(6), 1651; https://doi.org/10.3390/w12061651 -- http://www.bibliothek.uni-regensburg.de/ezeit/?2521238 -- http://www.mdpi.com/2073-4441/1/1 -- 2073-4441



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    6 / 62 / 627




    Influence of Structural Elements on the Spatial Sediment Displacement around a Jacket-Type Offshore Foundation

    Welzel, Mario / Schendel, Alexander / Goseberg, Nils et al. | BASE | 2020

    Free access

    Installation method of offshore wind power suction type jacket foundation

    LI SEN / LI YAZHOU / QIU SONG et al. | European Patent Office | 2023

    Free access

    Offshore wind power multi-cylinder jacket foundation construction method

    ZHANG PUYANG / DING HONGYAN | European Patent Office | 2021

    Free access

    Offshore multi-barrel jacket foundation transportation method and integrated transport ship

    DING HONGYAN / ZHANG PUYANG | European Patent Office | 2022

    Free access

    Offshore wind power multi-cylinder jacket foundation construction method and workboat

    LIU DONGHUA / DING HONGYAN / TANG DONGSHENG et al. | European Patent Office | 2021

    Free access