The present work is inspired by an industrial task, i.e. spray painting a large area by means of a robotic system consisting in a Cable-Driven Parallel Robot (CDPR). In many cases, the area of the robot workspace is smaller than the area to be painted. For this reason, the base of the robot has to be shifted several times during the painting process. These robots are referred to as Repetitive Workspace Robots (RWR). In other words, in order to accomplish the whole task, they need to be moved after they have completed a sub-task locally. A cable suspended CDPR is an ideal candidate for such tasks; it can be thin, light, flexible and cost-efficient. The question is: which is the best shape of the local workspace in these conditions? In fact, not always a larger area of the local workspace guarantees an efficient painting process. This is because the efficiency relies mainly on the shape rather than on the local workspace area itself. In this work we employ an index [Seriani S, Gallina P, Gasparetto A, 2014] to evaluate the efficiency of the workspace of a 2-link CDPR. Finally, we show how the index value changes in relation to some geometrical parameters of the robot, thus laying the foundations for a general design methodology.


    Access

    Download


    Export, share and cite



    Title :

    Workspace optimization for a planar cable-suspended direct-driven robot



    Publication date :

    2015-01-01



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629





    Dynamic Control of a Novel Planar Cable-Driven Parallel Robot with a Large Wrench Feasible Workspace

    Juarez-Perez S. / Martin-Parra A. / Arena A. et al. | BASE | 2022

    Free access

    Model-Based Workspace Assessment of a Planar Cable-Driven Haptic Device

    Schäfer, Max B. / Weiland, Sophie / Worbs, Lukas et al. | Springer Verlag | 2023


    Transmission Systems to Extend the Workspace of Planar Cable-Driven Parallel Robots

    Behroozi, Foroogh / Cardou, Philippe / Caro, Stéphane | Springer Verlag | 2023