Denne afhandling omhandler autonom flyvning med helicopter slung load systemer og præsenterer en metodik der beskriver system udvikling fra modellering og system analyse, over sensor fusion og tilstands estimering, til kontroller design. To forskellige udviklingsgrene præsenteres: Flyvning med generisk slung load og landmine detektion med helikopter slung load system. Et hoved bidrag for denne afhandling er udviklingen af en komplet helikopter og slung load model. Den generiske slung load model kan bruges til at modellere alle body-to-body ophængssystemer og giver en intuitiv måde at modeller og simulerer slung load systemer på. Den inkludere modellering af snor kollaps og kollision, aerodynamisk kobling mellem helikopter og load og kan benyttes til modellering af multibody systemer med flere helikoptere eller flere loads. Til generel slung load flyvning udvikles et integreret estimator og kontrol system til brug på autonome helikoptere. Estimatoren benytter udelukkende vision baserede målinger og behøver kun lidt information om selve systemet da den estimere den vigtigste system parameter, længden på ophængssnoren, sammen med system tilstandende. Kontrolleren benytter en kombineret feedforward og feedback fremgangsmåde til at undgå at eksitere og samtidigt aktivt undertrykke load svingninger. Til minedetektion udvikles en estimator der giver full tilstandsinformation for helikopter slung load systemet, inklusiv slung load attitude. En linear kontroller til tracking af trajektorier udvikles udvilkes til et generisk helikopter slung load system. Til generering af en reference vektor til kontrolleren udvikles en trajektorie mapping algoritme. Denne er i stand til at mappe en givet slung load trajektorie til en fuld system reference baseret på systemets dynamiske og kinematiske egenskaber. Metoder og algoritmer udviklet i denne afhandling er valideret gennem systematisk simulering og test flyvning, og resultaterne der præsenteres viser god overenstemmelse mellem teori og praksis. ; This thesis treats the subject of autonomous helicopter slung load flight and presents the reader with a methodology describing the development path from modeling and system analysis over sensor fusion and state estimation to controller synthesis. The focus is directed along two different application branches: Generic cargo transport using a helicopter slung load system and landmine clearing using helicopter slung load deployed mine detector. This is reflected in the methodology and contributions of this thesis where some are shared by the two branches and some are specific for each branch. This first major contribution of this thesis is the development of a complete helicopter and slung load system model that is shared between the two branches. The generic slung load model can be used to model all body to body slung load suspension types and gives an intuitive and easy-to-use way of modeling and simulating different slung load suspension types. It further includes detection and response to wire slacking and tightening, it models the aerodynamic coupling between the helicopter and the load, and can be used for multilift systems with any combination of multiple helicopters and multiple loads. To enable slung load flight capabilities for general cargo transport, an integrated estimation and control system is developed for use on already autonomous helicopters. The estimator uses vision based updates only and needs little prior knowledge of the slung load system as it estimates the length of the suspension system together with the system states. The controller uses a combined feedforward and feedback approach to simultaneously prevent exciting swing and to actively dampen swing in the slung load. For the mine detection application an estimator is developed that provides full system state information, including slung load heading. A linear trajectory tracking controller for the generic helicopter slung load system is devised using an optimal approach and it can be tuned to any given suspension system. To generate a full system reference for the controller, a trajectory mapping algorithm is developed. It is capable of mapping a desired slung load trajectory to a feasible full state reference based on the dynamic and kinematic system behavior. The methods and algorithms developed in this thesis are validated by systematic simulation and flight testing, and the results presented throughout the thesis show very good agreement between theory and practice.


    Access

    Download


    Export, share and cite



    Title :

    Modeling, Estimation, and Control of Helicopter Slung Load System


    Contributors:

    Publication date :

    2008-01-01


    Remarks:

    Bisgaard , M 2008 , Modeling, Estimation, and Control of Helicopter Slung Load System . Department of Control Engineering, Aalborg University , Aalborg .


    Type of media :

    Book


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Modeling and control of a helicopter slung-load system

    Oktay, Tugrul | Online Contents | 2013


    Modeling and control of a helicopter slung-load system

    Oktay, Tugrul / Sultan, Cornel | Elsevier | 2013


    Full State Estimation for Helicopter Slung Load System

    Bisgaard, Morten / la Cour-Harbo, Anders / Bendtsen, Jan Dimon | BASE | 2007

    Free access

    Full State Estimation for Helicopter Slung Load System

    Bisgaard, Morten / la Cour-Harbo, Anders / Bendtsen, Jan | AIAA | 2007


    Full State Estimation for Helicopter Slung Load System AIAA Paper

    Bisgaard, M. / la Cour-Harbo, A. / Bendtsen, J. | British Library Conference Proceedings | 2007