The performance of countless engineering systems usually depends on various physical phenomena belonging to different disciplines, such as solid mechanics, fluid mechanics, and heat transfer. Such problems are normally referred to as multiphysics. Topology optimization provides a promising approach to systematically solve multiphysics problems, which are often dominated by nonlinear phenomena and are not well suited to intuitive design strategies. Topology optimization methods have been extensively developed and applied to problems that are dominated by single phenomena, such as compliance minimization in structural mechanics and pressure drop minimization in fluid mechanics. However, significantly less research has been applied to topology optimization of multiphysics problems. In this paper, the design of transpiration-cooled porous structures will be performed using topology optimization. The design domain is the porous material that the coolant penetrates in transpiration-cooling systems. This is a coupled problem for which the interaction of multiple physical phenomena (namely, fluid mechanics and heat transfer) needs to be accounted for. This is achieved through coupled numerical simulations of porous media and pure fluid flow using a two-domain approach. To the best of our knowledge, topology optimization has not yet been applied to the design of transpiration-cooling systems.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Topology Optimization Applied to Transpiration Cooling


    Contributors:

    Published in:

    AIAA Journal ; 57 , 1 ; 297-312


    Publication date :

    2018-11-20


    Size :

    16 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Transpiration cooling panel

    DICHIARA ROBERT A JR | European Patent Office | 2023

    Free access

    Two-dimensional transpiration cooling

    MAUER, R. / SCHNEIDER, P. / STRAPP, M. | AIAA | 1969


    TOWARDS PREDICTION OF TRANSPIRATION COOLING

    Steingrimsson, A. / Mankbadi, R. / Kapat, J. et al. | British Library Conference Proceedings | 2010


    Transpiration cooling using gaseous hydrogen

    Lezuo, Michael / Haidn, Oskar | AIAA | 1997


    Transpiration cooling in hypersonic flight

    Tavella, Domingo / Roberts, Leonard | NTRS | 1989