Aeroelastic limit-cycle oscillations due to aerodynamic nonlinearities are usually investigated using coupled fluid–structure interaction simulations in the time domain. These simulations are computationally expensive, especially if a large number of limit-cycle oscillation solutions must be computed to study the Hopf bifurcation behavior in the immediate surroundings of the flutter point. To facilitate such bifurcation parameter studies, an adaptation of the well-known p-k flutter analysis method is proposed in this paper. In this method, the first harmonic of the motion-induced unsteady aerodynamic forces is no longer assumed to be solely determined by constant-coefficient frequency response functions. Instead, the nonlinear dependence on the oscillation amplitudes and the phase angle between the input degrees of freedom are additionally taken into account. Therefore, the first harmonic Fourier components of the aerodynamic forces are sampled and interpolated in advance. The limit-cycle oscillation solution is then found iteratively. The proposed amplitude-dependent p-k method is applied to a classic two-degree-of-freedom spring-mounted airfoil system, where the nonlinear aerodynamic forces are computed from Euler simulations. Fluid–structure interaction simulations are performed for validation of the method. Both methods show good agreement. Furthermore, the amplitude-dependent p-k method is shown to be a useful tool to rapidly study structural parameter variations.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Prediction of Aeroelastic Limit-Cycle Oscillations Based on Harmonic Forced-Motion Oscillations


    Contributors:

    Published in:

    AIAA Journal ; 55 , 10 ; 3517-3529


    Publication date :

    2017-06-16


    Size :

    13 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English







    Prediction of Transonic Limit Cycle Oscillations using an Aeroelastic Harmonic Balance Method

    Yao, W. / Marques, S. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2014


    Aeroelastic Limit Cycle Oscillations on a 3D Wing

    Dequand, S. / Mortchelewicz, G. D. / Sens, A. S. | British Library Conference Proceedings | 2017