Multimode spacecraft micropropulsion systems that include a high-thrust chemical mode and high-specific impulse electric mode are assessed with specific reference to CubeSat-sized satellite applications. Both cold-gas butane propellant and ionic liquid chemical monopropellant modes are investigated alongside pulsed plasma, electrospray, and ion electric thruster modes. These systems are studied by varying electric propulsion usage percent and calculating the payload mass fraction and thruster burn time for missions requiring 250, 500, and 1000    m / s delta-V. Systems involving chemical monopropellants have the highest payload mass fractions for a reference mission of 500    m / s delta-V and 6U-sized CubeSat, where 1U is a 10    c m × 10    c m × 10    c m volume, for electric propulsion usage below 70% of total delta-V; whereas for higher electric propulsion usage, cold-gas thrusters deliver a higher payload mass fraction due to lower system inert mass. Due to the combination of a shared propellant for both propulsive modes, low inert mass, high electric thrust, and specific impulse near optimum for the system, the monopropellant/electrospray system has the highest mission capability in terms of delta-V for missions lasting less than 150 days.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Assessment of Multimode Spacecraft Micropropulsion Systems


    Contributors:

    Published in:

    Publication date :

    2017-03-03


    Size :

    10 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Assessment of Multimode Spacecraft Micropropulsion Systems

    Berg, Steven P | Online Contents | 2017


    Micropropulsion for small spacecraft

    Micci, Michael M. | TIBKAT | 2000


    MEMS Micropropulsion Components for Small Spacecraft

    Rangsten, P. / Johansson, H. / Bendixen, M. et al. | British Library Conference Proceedings | 2011


    Electric micropropulsion systems

    Wright, W.P. / Ferrer, P. | Elsevier | 2014