The performance of hypersonic inlets is significantly affected by the presence of shock/boundary-layer interactions. To examine the potential of microramps for shock/boundary-layer interaction control in a finite-width duct, a detailed experimental and computational study has been conducted with a separated oblique shock/boundary-layer interaction generated by a 12 deg shock generator at Mach 3.5. Results show that the shock/boundary-layer interaction in the finite-width duct generates complex three-dimensional flow structures with significant swirling nature, and the traditional microramps cannot suppress the separation effectively. Therefore, a type of highly swept microramps with a large chord ratio and small incidence angle is brought forward and investigated. By the precompression effect, the dividing effect, the obstructing effect, and the energizing effect, the highly swept microramps with a height of 0.24 times the boundary-layer thickness show good control capability on the shock/boundary-layer interaction. In addition, the efficiency of the control method for different shock impingement positions is obtained, indicating that the separation can be well controlled when the shock impinges on the aft part of the highly swept microramps.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Control of Shock/Boundary-Layer Interaction for Hypersonic Inlets by Highly Swept Microramps


    Contributors:
    Zhang, Yue (author) / Tan, Hui-jun (author) / Du, Mo-chen (author) / Wang, De-peng (author)

    Published in:

    Publication date :

    2014-09-25


    Size :

    11 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English