Q learning is a machine learning technique which is used in vehicular communication network. It provides faster communication between vehicles. In this paper, we reviewed various algorithms such as value based, policy based, Model based, Q‐learning based algorithm used for reinforcement learning. We highlight working of an agent, importance, applications and terminologies of Q learning. This chapter helps researchers to find out the research gap for further research.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Q Learning Algorithm for Network Resource Management in Vehicular Communication Network


    Beteiligte:
    Rawat, Romil (Herausgeber:in) / Bhardwaj, Purvee (Herausgeber:in) / Kaur, Upinder (Herausgeber:in) / Telang, Shrikant (Herausgeber:in) / Chouhan, Mukesh (Herausgeber:in) / Sankaran, K. Sakthidasan (Herausgeber:in) / Agarwal, Vartika (Autor:in) / Sharma, Sachin (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    19.12.2022


    Format / Umfang :

    16 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Network Resource Allocation Security Techniques and Challenges for Vehicular Communication Network Management

    Agarwal, Vartika / Sharma, Sachin / Bansal, Gagan | Springer Verlag | 2022



    Network Slicing for Vehicular Communication

    Khan, Hamza / Luoto, Petri / Samarakoon, Sumudu et al. | ArXiv | 2019

    Freier Zugriff

    Traffic prediction with deep learning for vehicular communication network

    Wang, Jin / Liu, Peixin | British Library Conference Proceedings | 2022


    Network slicing for vehicular communication

    Khan, H. (Hamza) / Luoto, P. (Petri) / Samarakoon, S. (Sumudu) et al. | BASE | 2021

    Freier Zugriff