This chapter discusses recent advances in the use of computer vision for the control of micro aerial vehicles (MAVs). It provides a brief overview of system design and sensors of a MAV. The system design described is from the Pixhawk MAV platform. In most approaches, ego‐motion estimation is achieved by fusing information from an inertial measurement unit (IMU) with visual measurements. State estimation is a filtering approach using an extended Kalman filter (EKF) for fusing inertial and vision measurements. The vehicle pose is represented by the pose of the IMU within the world coordinate frame. The camera sensor is the offset of the IMU coordinate frame by a rotation and translation. The big advantage of stereo vision is that the metric scale of camera poses and 3D points can be computed directly. The use of optical flow for controlling MAVs has been popularized with the appearance of Parrot's AR Drone.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Computer Vision for MAVs


    Beteiligte:


    Erscheinungsdatum :

    28.02.2017


    Format / Umfang :

    20 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Basic Micro-Aerial Vehicles (MAVs) obstacles avoidance using monocular computer vision

    Kong, Lim-Kwan / Sheng, Jie / Teredesai, Ankur | IEEE | 2014


    Autogyros for MAVs

    Shippen, J. / Royal Aeronautical Society | British Library Conference Proceedings | 1996



    Vision-based SLAM system for MAVs in GPS-denied environments

    Urzua, Sarquis / Munguía Alcalá, Rodrigo Francisco / Grau Saldes, Antoni | BASE | 2017

    Freier Zugriff

    Towards Vision-based Safe Autonomous Landing of MAVs at Night

    Delaune, Jeff / Matthies, Larry / Bhuta, Rishi et al. | NTRS | 2018