This chapter covers the Kalman filter and its variants. Kalman filter is the optimal Bayesian filter in the sense of minimizing the mean‐square estimation error for linear systems with Gaussian noise. Algorithms that extend the applicability of the Kalman filter to nonlinear systems either use power series to approximate the nonlinear functions in the state‐space model or use numerical methods to approximate the corresponding probability distributions. While the extended Kalman filter and the divided‐difference filter belong to the former category of algorithms, the unscented Kalman filter and the cubature Kalman filter belong to the latter. Information filter and extended information filter provide alternative formulations of the Kalman filter and the extended Kalman filter by recursively updating the inverse of the estimation error covariance matrix. Using a mixture of Gaussians to approximate the posterior, the Gaussian‐sum filter extends the applicability of the Kalman filter to non‐Gaussian systems. In the Kalman filter algorithm, the corrective term is reminiscent of the proportional controller. The generalized proportional‐integral‐derivative (PID) filter uses a more sophisticated corrective term inspired by the PID controller. Finally, a number of applications of Kalman filtering algorithms are reviewed including information fusion, augmented reality, urban traffic network, cybersecurity of power systems, incidence of influenza, and COVID‐19 pandemic.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Kalman Filter


    Beteiligte:
    Setoodeh, Peyman (Autor:in) / Habibi, Saeid (Autor:in) / Haykin, Simon (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    12.04.2022


    Format / Umfang :

    22 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Kalman Filter

    Jaulin, Luc | Wiley | 2019


    The Kalman Filter

    Wang, Liuping / Guan, Robin Ping | Wiley | 2022


    Kalman Filter Basics

    Grewal, Mohinder S. / Weill, Lawrence R. / Andrews, Angus P. | Wiley | 2000


    Kalman Filter Engineering

    Grewal, Mohinder S. / Weill, Lawrence R. / Andrews, Angus P. | Wiley | 2000


    Modal kalman filter

    Mohammaddadi, Gh. / Pariz, N. / Karimpour, A. | British Library Online Contents | 2017