This chapter proposes to generalize the Kalman filter to cases where the functions are nonlinear and the noise is non‐Gaussian. The resulting observer will be called the Bayes filter. In the linear and Gaussian case, the Bayes filter is equivalent to the Kalman filter. A Bayes network is a probabilistic graphical model that represents a set of random vectors and their conditional dependencies. By increasing the level of abstraction, the Bayes filter will allow people to have a better understanding of the Kalman filter, and some proofs become easier and more intuitive. The smoothing process consists of a state estimation when all the measurements are available. The chapter considers the smoothing problem where the estimation is made more accurate by taking all future measurements, when available. The Kalman smoother is used to improve the precision of the landmark positions by taking into account the past as well as the future.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Bayes Filter


    Beteiligte:
    Jaulin, Luc (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    30.09.2019


    Format / Umfang :

    29 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Passive position location using Bayes' conditional density filter

    Challa, S. / Faruqi, F.A. | Tema Archiv | 1997


    Passive position location using Bayes' conditional density filter [3087-07]

    Challa, S. / Faruqi, F. A. / SPIE | British Library Conference Proceedings | 1997


    COMPUTER PROGRAM, APPARATUS, VEHICLE, AND METHOD FOR A BAYES FILTER OR SMOOTHER

    NEUHÖFER JONAS / DR REICHARDT JÖRG | Europäisches Patentamt | 2025

    Freier Zugriff

    COMPUTER PROGRAM, APPARATUS, VEHICLE, AND METHOD FOR A BAYES FILTER OR SMOOTHER

    NEUHÖFER JONAS / REICHARDT JÖRG | Europäisches Patentamt | 2025

    Freier Zugriff

    Practical Bayes statistics

    Clarotti,C.A. / Spizzichino,F. / ENEA,IT et al. | Kraftfahrwesen | 1988