This chapter introduces some of the basic techniques of estimation that provide the foundation for state estimation and its applications like tracking and navigation. The problem of parameter estimation is defined and the most commonly used models for unknown parameters (nonrandom and random) are described. The maximum likelihood (ML) and the maximum a posteriori (MAP) estimators are discussed. The least squares (LS) and the minimum mean square error (MMSE) estimators are presented. The various “measures of quality”, unbiasedness and variances of estimators are also included. The consistency of estimators is discussed, together with “information limit” results: the Cramer‐Rao lower bound, the Fisher information, and estimator efficiency. A problem solving section appears at the end of the chapter.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Basic Concepts in Estimation


    Beteiligte:


    Erscheinungsdatum :

    04.01.2002


    Format / Umfang :

    31 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Basic Concepts

    Kaushik, Mrinal / Hanmaiahgari, Prashanth Reddy | Springer Verlag | 2016


    Basic concepts

    Hoermann, H.-J. / European Association for Aviation Psychology | British Library Conference Proceedings | 1998


    Basic design concepts

    Evans, J.H. | Engineering Index Backfile | 1959


    Basic Concepts Summary

    Landgraf, Markus | TIB AV-Portal | 2016

    Freier Zugriff