This chapter extends the estimation concepts presented previously to the case of dynamic (time‐varying) quantities. The estimation of the state vector of a stochastic linear dynamic system is considered. The state estimator for discrete‐time linear dynamic systems driven by white noise—the (discrete‐time) Kalman filter—is introduced and its properties are discussed. The continuous‐time case is considered, and an example that illustrates the discrete time Kalman filter is given. The issue of consistency of a dynamic estimator, which is crucial for evaluation of estimator optimality in every implementation, is discussed. The initialization of estimators and practical ways to make it consistent are presented. A problem solving section appears at the end of the chapter.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    State Estimation in Discrete‐Time Linear Dynamic Systems


    Beteiligte:


    Erscheinungsdatum :

    04.01.2002


    Format / Umfang :

    68 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Empirical Bayes state estimation in discrete time linear systems

    Kamat, S. J. / Martz, H. F., Jr. | NTRS | 1971



    Extensions of Discrete‐Time Linear Estimation

    Bar‐Shalom, Yaakov / Li, X.‐Rong / Kirubarajan, Thiagalingam | Wiley | 2002


    Linear Discrete-Time Systems - H~∞ Dynamic Output-Feedback Control with Preview

    Gershon, Eli | British Library Conference Proceedings | 2020