Platoon formation of highway vehicles has the potential to significantly enhance road safety, improve highway utility, and increase traffic efficiency. However, various uncertainties and disturbances that are present in real‐world driving conditions make the implementation of vehicular platoon a challenging problem. This study presents an H‐infinity control method for a platoon of heterogeneous vehicles with uncertain vehicle dynamics and uniform communication delay. The requirements of string stability, robustness and tracking performance are systematically measured by the H‐infinity norm, and explicitly satisfied by casting into the linear fractional transformation format. A delay‐dependent linear matrix inequality is derived to numerically solve the distributed controllers for each vehicle. The performances of the controlled platoon are theoretically analysed by using a delay‐dependent Lyapunov function which includes a linear quadratic function of states during the delay period. Simulations with a platoon of heterogeneous vehicles are conducted to demonstrate the effectiveness of the proposed method under random parameters and external disturbances.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Robust control of heterogeneous vehicular platoon with uncertain dynamics and communication delay

    Gao, Feng / Li, Shengbo Eben / Zheng, Yang et al. | IET | 2016

    Freier Zugriff

    Decoupled Control of Vehicular Platoon with Heterogeneous Communication Delay

    Liu, Bao / Yang, Cai / Gao, Feng et al. | SAE Technical Papers | 2018


    Decoupled Control of Vehicular Platoon with Heterogeneous Communication Delay

    Liu, Bao / Gao, Feng / Chen, Tao et al. | British Library Conference Proceedings | 2018



    String Stability for Heterogeneous Vehicular Platoon with Fault

    Pan, Chengwei / Chen, Yong / Liu, Yuezhi et al. | IEEE | 2021