This study examines the effects of different rotor skew patterns on the cogging torque, the excitation torque ripple, the average torque, and the axial force in an interior permanent magnet synchronous motor. A genetic algorithm is used to minimise the cogging torque for different skew patterns based on analytical functions. The optimal design obtained is verified with finite element analysis. The results show that the linear skew patterns reduce the cogging torque, but increase the axial force. Four‐ and five‐step symmetric skew, herring‐bone skew, and five‐step W‐shaped skew patterns provide an adequate reduction in the cogging torque and axial force, but they have higher excitation torque ripple compared with the linear skew pattern.
Rotor skew pattern design and optimisation for cogging torque reduction
IET Electrical Systems in Transportation ; 6 , 2 ; 126-135
01.06.2016
10 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
permanent magnet motors , cogging torque minimisation , four‐step symmetric skew patterns , synchronous motors , genetic algorithms , torque control , herring‐bone skew patterns , five‐step W‐shaped skew patterns , excitation torque ripple , five‐step symmetric skew patterns , rotors , interior permanent magnet synchronous motor , cogging torque reduction , axial force , rotor skew pattern design , linear skew patterns , finite element analysis , rotor skew pattern optimisation , analytical functions , machine control , genetic algorithm
Skewed rotor cores with grooves for reducing cogging torque
Europäisches Patentamt | 2019
|