Current advances in artificial intelligence are providing new opportunities for utilizing the enormous amount of data available in contemporary urban road surveillance systems. Several approaches, methodologies, and techniques have been presented for analyzing and forecasting traffic counts because such information has been identified as vital for the deployment of advanced transportation management and information systems. In this paper, a meta-analysis framework is presented for improving forecasted information of traffic counts, based on an adaptive data processing scheme. In particular, a framework for combining traffic count forecasts within a Mamdani-type fuzzy adaptive optimal control scheme is presented and analyzed. The proposed methodology treats the uncertainty pertaining to such circumstances by augmenting qualitative information of future traffic flow states (and values) with a knowledge base and a heuristic optimization routine that provides dynamic training capabilities, resulting in an efficient real-time forecasting mechanism. Results from the application of the proposed framework on data acquired from realistic signalized urban network data (of Athens, Greece) and for a diversity of locations exhibit its potential.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fuzzy Rule-Based System Approach to Combining Traffic Count Forecasts


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:


    Erscheinungsdatum :

    01.01.2010




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Traffic forecasts

    Online Contents | 1996




    Fuzzy Inference Rule based Neural Traffic Light Controller

    Mir, Aqeela / Hassan, Ali | British Library Conference Proceedings | 2018