The objective of this study is to improve the estimation of the dispersion parameter of the negative binomial distribution for modeling motor vehicle collisions. The negative binomial distribution is widely used to model count data such as traffic crash data, which often exhibit low sample mean values and small sample sizes. Under such situations, the most commonly used methods for estimating the dispersion parameter–the method of moment and the maximum likelihood estimate–may become inaccurate and unstable. A bootstrapped maximum likelihood method is proposed to improve the estimation of the dispersion parameter. The proposed method combines the technique of bootstrap resampling with the maximum likelihood estimation method to obtain better estimates of the dispersion parameter. The performance of the bootstrapped maximum likelihood estimate is compared with the method of moment and the maximum likelihood estimates through Monte Carlo simulations. To validate the simulation results, the methods are applied to observed data collected at four-leg unsignalized intersections in Toronto, Ontario, Canada. Overall, the results show that the proposed bootstrap maximum likelihood method produces smaller biases and more stable estimates. The improvements are more pronounced with small samples and low sample means.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Estimating Dispersion Parameter of Negative Binomial Distribution for Analysis of Crash Data


    Untertitel :

    Bootstrapped Maximum Likelihood Method


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:
    Zhang, Yunlong (Autor:in) / Ye, Zhirui (Autor:in) / Lord, Dominique (Autor:in)


    Erscheinungsdatum :

    01.01.2007




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Transferability Analysis of Heterogeneous Overdispersion Parameter Negative Binomial Crash Models

    Venkataraman, Narayan / Shankar, Venky / Blum, Jeremy et al. | Transportation Research Record | 2016


    Evaluating alternative variations of Negative Binomial–Lindley distribution for modelling crash data

    Khodadadi, Ali / Shirazi, Mohammadali / Geedipally, Srinivas et al. | Taylor & Francis Verlag | 2023


    Adjustment for Maximum Likelihood Estimate of Negative Binomial Dispersion Parameter

    Park, Byung-Jung / Lord, Dominique | Transportation Research Record | 2008