Under the existing loosely distributed sensor environment with heterogeneous data sources, transportation planning and management agencies have found a critical need for the efficient storage, processing, and extraction of network-level information. The emerging practice of cloud computing provides a revolutionary solution for network-level information needs. This paper introduces MapReduce, a distributed computing framework for the design of data-intensive software systems that can manage and manipulate a large volume of data. With a focus on a traffic-oriented, data-intensive application, the researchers designed and implemented a system for the provision of traveler information based on travel time reliability. The system leverages the unified data storage and computing platform provided by the cloud computing architecture.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Monitoring Travel Time Reliability from the Cloud


    Untertitel :

    Cloud Computing–Based Architecture for Advanced Dissemination of Traffic Information


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:
    Lei, Hao (Autor:in) / Xing, Tao (Autor:in) / Taylor, Jeffrey D. (Autor:in) / Zhou, Xuesong (Autor:in)


    Erscheinungsdatum :

    01.01.2012




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Monitoring and Predicting Freeway Travel Time Reliability

    National Research Council (U.S.) | British Library Conference Proceedings | 2005


    Monitoring and Predicting Freeway Travel Time Reliability

    van Lint, J. W. C. / van Zuylen, H. J. | Transportation Research Record | 2005


    Advances in travel time reliability monitoring and assessment

    List, George F. / Williams, Billy | Taylor & Francis Verlag | 2017