Identifying the causes of congestion is the key to solving traffic congestion. To improve the efficiency of congestion control, this paper establishes a congestion cause identification method based on the three stages of pattern recognition, source tracing, and cause discrimination. The K-means algorithm was proposed to calculate the frequency threshold of recurrent congestion, trace the sources of congestion according to the rules of congestion propagation time sequences, build a congestion fault tree based on causal logic relationships, and determine the occurrence probability and importance of each cause by using the expert scoring method and cloud model. The test results showed that the method is promising and could provide support for scientific congestion control.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Congestion Cause Identification Method for Urban Main Roads


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:
    Xiaoxi, Cai (Autor:in) / Yanping, Xiao (Autor:in) / Lei, Zhang (Autor:in)


    Erscheinungsdatum :

    12.12.2023




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Dynamic Comprehensive Evaluation of Traffic Congestion on Urban Roads

    Shu, Kun / Zhou, Bei / Zhang, Sheng-Rui et al. | ASCE | 2020


    Dynamic Comprehensive Evaluation of Traffic Congestion on Urban Roads

    Shu, Kun / Zhou, Bei / Zhang, Sheng-Rui et al. | TIBKAT | 2020



    The identification of recurrent urban traffic congestion

    Evans, R.G. / Bell, M.C. | IET Digital Library Archive | 1996


    Urban traffic congestion

    Orchard, D.F. | Engineering Index Backfile | 1959