A methodology is presented for forecasting traffic volatility in urban arterial networks with real-time traffic flow information. This methodology provides a generalization of the standard modeling approach, in which both the mean, modeled by an autoregressive moving average process, and the variance, modeled by an autoregressive conditional heteroscedastic process, are time-varying. The statistical analysis and forecasting performance of the proposed model are investigated with real-time traffic detector data from a real urban arterial network. The results indicate the potential of the proposed model to improve the accuracy of predicted traffic volatility across different lengths of forecasting horizon in comparison with the standard generalized autoregressive conditional heteroscedastic methodology.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-Time Traffic Volatility Forecasting in Urban Arterial Networks


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:


    Erscheinungsdatum :

    01.01.2006




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Real-Time Traffic Volatility Forecasting in Urban Arterial Networks

    Tsekeris, Theodore / Stathopoulos, Antony | Transportation Research Record | 2006


    Real-Time Traffic Volatility Forecasting in Urban Arterial Networks

    Tsekeris, T. / Stathopoulos, A. / National Research Council (U.S.) | British Library Conference Proceedings | 2006


    The Real Time Traffic Control Strategy of Oversaturated Intersections on Urban Traffic Arterial

    Luo, X. / Wu, Y. / Lei, L. et al. | British Library Conference Proceedings | 2007