The effects on traffic flow of increasing proportions of both autonomous and cooperative adaptive cruise control (ACC) vehicles relative to manually driven vehicles were studied. Such effects are difficult to estimate from field tests on highways because of the low market penetration of ACC systems. The research approach used Monte Carlo simulations based on detailed models presented in the literature to estimate the quantitative effects of varying the proportions of vehicle control types on lane capacity. The results of this study can help to provide realistic estimates of the effects of the introduction of ACC to the vehicle fleet. Transportation system managers can recognize that the autonomous ACC systems now entering the market are unlikely to have significant positive or negative effects on traffic flow. An additional value of studying ACC systems in this way is that these scenarios can represent the first steps in a deployment sequence that will lead to an automated highway system. Benefits gained at the early stages in this sequence, particularly through the introduction of cooperative ACC with priority access to designated (although not necessarily dedicated) lanes, can help support further investment in and development of automated highway systems.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Effects of Adaptive Cruise Control Systems on Highway Traffic Flow Capacity


    Weitere Titelangaben:

    Transportation Research Record


    Beteiligte:


    Erscheinungsdatum :

    2002-01-01




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Effects of Adaptive Cruise Control Systems on Highway Traffic Flow Capacity

    VanderWerf, J. / Shladover, S. E. / Miller, M. A. et al. | British Library Conference Proceedings | 2002


    The impact of adaptive cruise control systems on highway safety and traffic flow

    Wang,J. / Rajamani,R. / Univ.of Minnesota,US | Kraftfahrwesen | 2004