The mechanical properties of asphalt-mineral filler mastics have long been known to significantly influence the overall performance of paving mixtures. However, reinforcement mechanisms associated with the presence of fillers in asphalt mastics are not well understood. Particulate composite micromechanical models are shown to be a powerful tool for separating various reinforcing mechanisms in asphalt mastics, including volume filling, physiochemical, and particle-interaction reinforcement. The generalized self-consistent scheme model is shown to predict very reasonable baseline reinforcement levels for asphalt mastics, and simplified prediction tools are presented as an alternative to the cumbersome micromechanical solution. An experimental program was conducted to evaluate micromechanical predictions of mastic properties over a broad range of temperatures and filler concentrations. A new equivalent rigid layer modeling technique was developed, which suggests that stiffening effects observed in mastics beyond those due to volume filling may be largely explained by an effective increase in volume concentration of rigid inclusions due to a rigidly adsorbed asphalt layer just 0.02 to 0.10 μm thick. Particle-interaction reinforcement appears to play a smaller role, possibly as a result of the interaction of partially altered asphalt layers, and was observed to be significant only at very high filler contents. More work is needed to better understand the nature of physiochemical reinforcing and to study other possible stiffening mechanisms in mastics such as agglomeration, state of dispersion, and particle-size distribution.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Understanding Asphalt Mastic Behavior Through Micromechanics


    Weitere Titelangaben:

    Transportation Research Record


    Beteiligte:


    Erscheinungsdatum :

    1999-01-01




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Understanding Asphalt Mastic Behavior Through Micromechanics

    Buttlar, William G. | Online Contents | 1999




    Understanding the Stiffness of Porous Asphalt Mixture through Micromechanics

    Zhang, Hong / Anupam, Kumar / Skarpas, Tom et al. | Transportation Research Record | 2021

    Freier Zugriff

    Relating Asphalt Mixture Performance to Asphalt Mastic Rheology

    Biichner, Johannes / Wistuba, Michael P. | TIBKAT | 2020