This paper presents a personalized menu optimization model with preference updater in the context of an innovative Smart Mobility system that offers a personalized menu of travel options with incentives for each incoming traveler in real time. This Smart Mobility system can serve as a major travel demand management system that encourages energy-efficient travel options. The personalized menu optimization is built on a logit mixture model that captures each individual traveler’s choice behavior. The personalized menu optimization model is enhanced with a preference updater that can update the estimates of individual traveler’s preference parameters when new choice data is received. To illustrate the advantages of the proposed methodology, a case study is presented based on real travelers and trips in the greater Boston area from the Massachusetts Travel Survey data. The case study consists of two parts. In the first part, the personalized menu optimization with preference updater is tested in a setting where the travelers are new to the system and their preferences are updated through preference updater. A comparative analysis of the performance of the proposed method with preference updater is presented against the method without preference updater. In the second part, the benefit of using individual level preference parameters instead of population level preference parameters in the personalized menu optimization model is analyzed. The case study shows that the proposed method can outperform the hit rates of its two counterparts.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Personalized Menu Optimization with Preference Updater: A Boston Case Study


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:
    Song, Xiang (Autor:in) / Danaf, Mazen (Autor:in) / Atasoy, Bilge (Autor:in) / Ben-Akiva, Moshe (Autor:in)


    Erscheinungsdatum :

    04.04.2018




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Personalized Menu Optimization with Preference Updater: A Boston Case Study

    Song, Xiang / Danof, Mazen / Atasoy, Bilge et al. | TIBKAT | 2019


    UNMANNED AERIAL VEHICLE UPDATER

    HIEB ERIC RAY / BRUHN CHRISTOPHER WILLIAM / POLSON MATTHEW | Europäisches Patentamt | 2022

    Freier Zugriff

    Unmanned aerial vehicle updater

    HIEB ERIC RAY / BRUHN CHRISTOPHER WILLIAM / POLSON MATTHEW | Europäisches Patentamt | 2022

    Freier Zugriff

    Unmanned aerial vehicle updater

    HIEB ERIC RAY / BRUHN CHRISTOPHER WILLIAM / POLSON MATTHEW | Europäisches Patentamt | 2023

    Freier Zugriff

    UNMANNED AERIAL VEHICLE UPDATER

    HIEB ERIC RAY / BRUHN CHRISTOPHER WILLIAM / POLSON MATTHEW | Europäisches Patentamt | 2021

    Freier Zugriff