Stochastic learning automata (SLA) theory is used to model the learning behavior of commuters within the context of the combined departure time route choice (CDTRC) problem. The SLA model uses a reinforcement scheme to model the learning behavior of drivers. A multiaction linear reward-ϵ-penalty reinforcement scheme was introduced to model the learning behavior of travelers based on past departure time choice and route choice. A traffic simulation was developed to test the model. The results of the simulation are intended to show that drivers learn the best CDTRC option, and the network achieves user equilibrium in the long run. Results indicate that the developed SLA model accurately portrays the learning behavior of drivers, while the network satisfies user equilibrium conditions.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Application of Stochastic Learning Automata for Modeling Departure Time and Route Choice Behavior


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:
    Ozbay, Kaan (Autor:in) / Datta, Aleek (Autor:in) / Kachroo, Pushkin (Autor:in)


    Erscheinungsdatum :

    01.01.2002




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Application of Stochastic Learning Automata for Modeling Departure Time and Route Choice Behavior

    Ozbay, K. / Datta, A. / Kachroo, P. et al. | British Library Conference Proceedings | 2002



    Modeling Route Choice Behavior with Stochastic Learning Automata

    Ozbay, Kaan / Datta, Aleek / Kachroo, Pushkin | Transportation Research Record | 2001


    Punctuality-based route and departure time choice

    Siu, Barbara W.Y. / Lo, Hong K. | Taylor & Francis Verlag | 2014