Queue warning systems (QWSs) have been implemented to increase traffic safety by informing drivers about queued traffic ahead so that they can react in a timely manner to the queue. Existing QWSs rely on fixed traffic sensors to detect the back of a queue. It is expected that if the transmitted messages from connected vehicles (CVs) are used for this purpose, detection can be faster and more accurate. In addition, with CVs, delivery of the messages can be done with onboard units instead of dynamic message signs and provide more flexibility on how far upstream of the queue the messages are delivered. This study investigates the accuracy and benefits of the QWS on the basis of CV data. The study evaluated the safety benefits of the QWS under different market penetrations of CVs in future years. Surrogate safety measures were estimated with simulation modeling combined with the surrogate safety assessment model tool. Results from this study indicate that a relatively low market penetration—about 3% to 6%—for the congested freeway examined in this study was sufficient for an accurate and reliable estimation of the queue length. Even at 3% market penetration, the CV-based estimation of back-of-queue identification was significantly more accurate than that based on detector measurements. The results also found that CV data allowed faster detection of the bottleneck and queue formation. Further, the QWS improved the safety conditions of the network by reducing the number of rear-end conflicts. Safety effects become significant when the compliance percentage with the queue warning messages is more than 15%.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Safety Impacts of Queue Warning in a Connected Vehicle Environment


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:
    Khazraeian, Samaneh (Autor:in) / Hadi, Mohammed (Autor:in) / Xiao, Yan (Autor:in)


    Erscheinungsdatum :

    01.01.2017




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch