This paper discusses a machine-learning traffic signal control method. A full-scale corridor is analyzed and the transferability of using a model pre-trained on a single intersection is examined. Two controller designs are explored, a simple two-phase design and a full ring-and-barrier style controller. The full ring-and-barrier controller adapts many of the key features present in traditional controllers, such as protected-permissive left turns, so that they can be used in the reinforcement learning (RL) paradigm. This study is the first to propose a method that uses deep reinforcement learning (DRL) to implement a full ring-and-barrier style controller. The study also examines the feasibility of using transfer learning to pre-train a model on a single intersection and then fine-tune it for application in a complete environment. Training is done on a simple four lane intersection and the pre-trained model is then transferred for fine-tuning to six controllers operating on a corridor modeled with field data obtained for University Avenue in Waterloo, Ontario, Canada. The performance of the fully trained model is then compared with the existing signal plans in relation to the average delay and average queue length. Application of the ring-and-barrier design to this corridor was found to reduce delays by at least 5% and average queue lengths at intersections by 27%.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-Intersection Control with Deep Reinforcement Learning and Ring-and-Barrier Controllers


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:
    Muresan, Matthew (Autor:in) / Pan, Guangyuan (Autor:in) / Fu, Liping (Autor:in)


    Erscheinungsdatum :

    12.12.2020




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multi-intersection signal cooperative control method based on deep reinforcement learning

    MA CHANGXI / LIU YAN / ZHAO HONGXING et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Multi-intersection traffic signal control method based on deep reinforcement learning

    DENG HENG / WANG YULONG / GAO YANG et al. | Europäisches Patentamt | 2024

    Freier Zugriff


    Multi-intersection traffic signal control method based on deep reinforcement learning

    LIU LIJUAN / BAI GUANGMING | Europäisches Patentamt | 2023

    Freier Zugriff

    Single-intersection intersection traffic light control method based on improved deep reinforcement learning

    LIU BINGYAN / GUO HONG / DU JUNLIN et al. | Europäisches Patentamt | 2024

    Freier Zugriff