Traffic speed forecasting plays an important role in intelligent traffic monitoring systems. Existing methods mostly predefine a fixed adjacency matrix to capture the spatial correlation between sensors in a traffic network. However, there are multiple hidden spatial correlations between sensors. A single fixed adjacency matrix cannot adaptively capture multiple spatial correlations. To overcome this limitation, we proposed a novel multiadaptive spatiotemporal flow graph neural network (MAF-GNN) for traffic speed forecasting. Specifically, MAF-GNN mainly consists of a multiadaptive adjacency matrix mechanism and a spatiotemporal flow mechanism. The multiadaptive adjacency matrix mechanism was proposed to adaptively capture multiple hidden spatial correlations between sensors. The spatiotemporal flow mechanism was proposed to further enhance the capture of temporal and spatial correlations. The experimental results on two real-world traffic datasets, METR-LA and PeMS-Bay, demonstrated the superiority of MAF-GNN. MAF-GNN outperformed baseline models in 1-h ahead forecasting.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multiadaptive Spatiotemporal Flow Graph Neural Network for Traffic Speed Forecasting


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:
    Xu, Yaobin (Autor:in) / Liu, Weitang (Autor:in) / Mao, Tingyun (Autor:in) / Jiang, Zhongyi (Autor:in) / Chen, Lili (Autor:in) / Zhou, Mingwei (Autor:in)


    Erscheinungsdatum :

    09.09.2022




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Metro Traffic Flow Prediction via Knowledge Graph and Spatiotemporal Graph Neural Network

    Shun Wang / Yimei Lv / Yuan Peng et al. | DOAJ | 2022

    Freier Zugriff

    Spatiotemporal Graph Neural Networks for Traffic Forecasting: A Comparative Analysis

    Rao, Komati Venkateswara / Selvakumar, R. K. | Springer Verlag | 2024


    GSTGAT: Gated spatiotemporal graph attention network for traffic demand forecasting

    Shuilin Yao / Huizhen Zhang / Chenxi Wang et al. | DOAJ | 2024

    Freier Zugriff

    GSTGAT: Gated spatiotemporal graph attention network for traffic demand forecasting

    Yao, Shuilin / Zhang, Huizhen / Wang, Chenxi et al. | Wiley | 2024

    Freier Zugriff