Chaos theory is used to analyze highly complex systems and thus may be useful for transportation applications. A series of analyses with which to find and exploit chaos is outlined, including time delays and embedding dimensions, Fourier power series, the correlation dimension, the largest Lyapunov exponent, and predictions. As an example, traffic flow data are analyzed and found to be chaotic, although it is shown that this could be the result of high-frequency noise. When used with a low-pass filter, predictions based on chaos theory are shown to have greater predictive power than a nonlinear least-squares method.


    Zugriff

    Download

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Chaos Theory and Transportation Systems: Instructive Example


    Weitere Titelangaben:

    Transportation Research Record: Journal of the Transportation Research Board


    Beteiligte:


    Erscheinungsdatum :

    01.01.2004




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Chaos Theory and Transportation Systems: Instructive Example

    Frazier, Christopher | Online Contents | 2004


    Transportation Concurrency: Florida's Example

    Steiner, Ruth L. | Online Contents | 1999


    Transportation Concurrency: Florida's Example

    Steiner, R. L. / National Research Council | British Library Conference Proceedings | 1999


    Transportation Concurrency: Florida’s Example

    Steiner, Ruth L. | Transportation Research Record | 1999


    Gliding an instructive sport

    Hawks, F.M. | Engineering Index Backfile | 1930