The urban traffic usually has the characteristics of time-variation and nonlinearity, real-time and accurate traffic flow forecasting has become an important component of the Intelligent Transportation System (ITS). The paper gives a brief introduction of the basic theory of Kalman filter, and establishes the traffic flow forecasting model on the basis of the adaptive Kalman filter, while the traditional Kalman filtering model has the shortcomings of lower forecasting accuracy and easily running into filtering divergence. The Sage&Husa adaptive filtering algorithm will appropriately estimate and correct the unknown or uncertain noise covariance, so as to improve the dynamic characteristics of the model. The simulation results demonstrate that the adaptive Kalman filtering forecasting model has stronger tracking capability and higher forecasting precision, which is applicable to the traffic flow forecasting.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The Application of Adaptive Kalman Filter in Traffic Flow Forecasting



    Erschienen in:

    Erscheinungsdatum :

    10.04.2013


    Format / Umfang :

    6 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Application of the Kalman filter in traffic

    Nemcova, Pavla | Tema Archiv | 2005



    Hybrid dual Kalman filtering model for short‐term traffic flow forecasting

    Zhou, Teng / Jiang, Dazhi / Lin, Zhizhe et al. | Wiley | 2019

    Freier Zugriff

    Hybrid dual Kalman filtering model for short-term traffic flow forecasting

    Zhou, Teng / Jiang, Dazhi / Lin, Zhizhe et al. | IET | 2019

    Freier Zugriff