The multi researches and experiments show that the future highway traffic accident situation is shown by the highway traffic accident prediction. In the paper, support vector regression trained by genetic algorithm is presented in highway traffic accident prediction. In the method, genetic algorithm is used to train the parameters of support vector regression. Firstly, the regression function of support vector regression algorithm is introduced, and the parameters of support vector regression are optimized by genetic algorithm. The computation results between G-SVR and SVR can indicate that the prediction ability for highway traffic accidents of G-SVR is better than that of SVR absolutely.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Highway Traffic Accident Prediction Based on SVR Trained by Genetic Algorithm


    Beteiligte:

    Erschienen in:

    Advanced Materials Research ; 433-440 ; 5886-5889


    Erscheinungsdatum :

    03.01.2012


    Format / Umfang :

    4 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Traffic accident risk prediction method for highway confluence area

    WEISER / LIU HUI | Europäisches Patentamt | 2024

    Freier Zugriff

    Highway tunnel traffic accident prediction method based on convolutional neural network

    YANG YONGHONG / ZHENG TAO / ZHANG YU | Europäisches Patentamt | 2024

    Freier Zugriff

    Highway traffic accident information issuing system

    ZHAO LINNA / DAI SHUAI / GONG JIANGUO et al. | Europäisches Patentamt | 2015

    Freier Zugriff

    Traffic accident severity prediction using a novel multi-objective genetic algorithm

    Hashmienejad, Seyed Hessam-Allah / Hasheminejad, Seyed Mohammad Hossein | Taylor & Francis Verlag | 2017