Traffic volume prediction has been an interesting topic for decades during which various prediction models have been proposed. In this paper, Kalman filtering (KF) model is applied to predict traffic volume because of its significance in continuously updating the state variable as new observations. In order to enhance the prediction accuracy, an improved KF model is developed based on the current and historical data. To validate the improved KF model, empirical analysis is conducted. The results show that the improved KF model has higher accuracy than the traditional one and is more reliable and powerful in traffic volume prediction.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Volume Prediction Using Improved Kalman Filter



    Erschienen in:

    Applied Mechanics and Materials ; 602-605 ; 3881-3885


    Erscheinungsdatum :

    11.08.2014


    Format / Umfang :

    5 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Kalman filter approach to traffic modeling and prediction

    Grindey, Gregory J. / Amin, S. M. / Rodin, Ervin Y. et al. | SPIE | 1998



    Dynamic prediction of traffic volume through Kalman filtering theory

    Okutani, Iwao / Stephanedes, Yorgos J. | Elsevier | 1983


    Kalman filter approach to traffic modeling and prediction [3207-28]

    Grindey, G. J. / Amin, S. M. / Rodin, E. Y. et al. | British Library Conference Proceedings | 1998


    Kalman filter approach to traffic modeling and prediction [3207-28]

    Grindey, G. J. / Amin, S. M. / Rodin, E. Y. et al. | British Library Conference Proceedings | 1998