To accurately depict the dynamic characteristics for aircraft stall by aerodynamic model, a Wavelet Neural Network (WNN) stall aerodynamic modeling method based on Particle Swarm Optimization (PSO) algorithm and Artificial Fish Swarm (AFS) algorithm is proposed. Numerical examples show that the proposed method has a good prediction precision, and it is also effective and feasible to build the aerodynamic model from flight data for aircraft stall.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on Stall Aerodynamics Modeling Based on WNN Trained by AFS-PSO Hybrid Algorithm from Flight Data



    Erschienen in:

    Applied Mechanics and Materials ; 602-605 ; 3173-3176


    Erscheinungsdatum :

    11.08.2014


    Format / Umfang :

    4 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    "Hybrid" Pulsed Suction/Pulsed Blowing Jets for Improved Airfoil Stall/Post Stall Aerodynamics

    Hassan, A. A. / American Helicopter Society | British Library Conference Proceedings | 2005



    Simulation of Flight Dynamics with an Improved Post-Stall Aerodynamics Model

    Paul, R. / Gopalarathnam, A. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2012


    Modeling Abrupt Wing Stall from Flight Test Data

    Kokolios, A. / Cook, S. / Society of Flight Test Engineers | British Library Conference Proceedings | 2001