The development of information technology gives rise to explosive growth of the amount of data. As a result, a more effective data mining method in pattern recognition is called into existence, which can properly reflect the inherent daily activity structure of metro travelers. This study is aimed to enrich the traditional clustering methods and provide practical information in dealing with traffic volume variation to the metro system operations. In this study, daily metro origin-destination (OD) data come from smart card records of Shenzhen, China, which cover 290 days and 118 stations. Principal component analysis (PCA) and singular value decomposition (SVD) are applied to conduct dimensionality reduction. Affinity propagation is then chosen to cluster the dimensionality reduced matrix to identify demand patterns of the metro OD matrix. Eleven representative categories are clustered and shown.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Clustering Daily Metro Origin-Destination Matrix in Shenzhen China



    Erschienen in:

    Erscheinungsdatum :

    23.03.2015


    Format / Umfang :

    11 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    The Origin–Destination Matrix Development

    Dragu Vasile / Roman Eugenia Alina | DOAJ | 2019

    Freier Zugriff

    First-Train Timetable Synchronization in Metro Networks under Origin-Destination Demand Conditions

    Hetian Chai / Xiaopeng Tian / Huimin Niu | DOAJ | 2022

    Freier Zugriff


    Adaptive Feature Fusion Networks for Origin-Destination Passenger Flow Prediction in Metro Systems

    Xu, Yuhang / Lyu, Yan / Xiong, Guangwei et al. | IEEE | 2023

    Freier Zugriff