Represent a new Weapon-Target Assignment (WTA) model of warship fleet as to the characteristic of the modern naval battle field and the battle modality. This model considers the WTA to a multi-objects optimization problem, and a Fast and Elitist Non-Dominated Sorting Genetic Algorithm (FENSGA) is applied to resolve this model. The FENSGA can reach a set of wide-distributing, robust solution. One running of the FENSGA can reach a multi-Pareto solution, which the commander can select from. A simulation is given to prove the validity of this model and algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Weapon-Target Assignment Problem in the Warship Fleet Based on Fast and Elitist Non-Dominated Sorting Genetic Algorithm



    Erschienen in:

    Advanced Materials Research ; 605-607 ; 2399-2404


    Erscheinungsdatum :

    13.12.2012


    Format / Umfang :

    6 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Elitist Non-dominated Sorting Genetic Algorithm-Based Heuristic for Optimizing Rail Freight Transportation

    Panicker, Vinay V. / Aryadutt, C. S. / Anoop, K. P. | Springer Verlag | 2018


    Feature Selection for Fatigue Segment Classification System Using Elitist Non-Dominated Sorting in Genetic Algorithm

    Osman, M.H. / Nopiah, Z.M. / Shahrum, A. | British Library Conference Proceedings | 2012


    Genetic Fuzzy Tree Based Learning Algorithm Toward the Weapon-Target Assignment Problem

    Li, Jie / Wang, Rui / Nantogma, Sulemana et al. | Springer Verlag | 2022


    Genetic Fuzzy Tree Based Learning Algorithm Toward the Weapon-Target Assignment Problem

    Li, Jie / Wang, Rui / Nantogma, Sulemana et al. | British Library Conference Proceedings | 2022


    Genetic Fuzzy Tree Based Learning Algorithm Toward the Weapon-Target Assignment Problem

    Li, Jie / Wang, Rui / Nantogma, Sulemana et al. | TIBKAT | 2022