According to the UAV autonomous aerial refueling based on GPS/Machine Vision integration, the restrictions on the sensors during docking are analyzed. An adaptive Federal Kalman Filter (AFKF) is proposed, which is based on extended Kalman filter arithmetic, after modeling the sensors measurement models. Reference trajectory of docking is planed using cubic interpolators and docking control laws are designed with LQR. Simulation results show that the controller ensure the stabilized tracking and docking, and the AFKF outputs is continuous and stabilized during sensor failure comparing to centralize Kalman filter.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Autonomous Aerial Refueling for UAVs Based on GPS/MV



    Erschienen in:

    Advanced Materials Research ; 433-440 ; 4087-4094


    Erscheinungsdatum :

    03.01.2012


    Format / Umfang :

    8 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    GPS / MV Based Aerial Refueling for UAVs

    Mammarella, M. / Campa, G. / Napolitano, M. et al. | British Library Conference Proceedings | 2008


    GPS / MV Based Aerial Refueling for UAVs

    Mammarella, Marco / Campa, Giampiero / Napolitano, Marcello et al. | AIAA | 2008



    Autonomous Aerial Refueling for UAVs Using a Combined GPS-Machine Vision Guidance

    Campa, Giampiero / Fravolini, Mario Luca / Ficola, Antonio et al. | AIAA | 2004


    Vision-Based Autonomous Aerial Refueling

    Erkin, Tevfik / Abdo, Omer / Sanli, Yilmaz et al. | TIBKAT | 2022