Due to creating health problems for human by using vehicles in long term, seat suspension design is important especially in off-road vehicles. Recently, intelligent methods are focused by researchers for optimization problems. In this paper, artificial neural network biodynamic model (ANNBM) was used to simulate human body responses to the vertical direction and seat suspension was optimized to reduce vibration transmitted from seat to lower lumbar. Particle Swarm Optimization (PSO) was employed for this purpose. The results of simulation shows 0.6 seat to spine vibration transmissibility (SST), and the efficiency of suspension seems good to remove unwanted vibration.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Off-Road Seat Suspension Optimization by Particle Swarm Algorithm



    Erschienen in:

    Erscheinungsdatum :

    10.04.2013


    Format / Umfang :

    5 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Optimization of Semi-active Suspension System Using Particle Swarm Optimization Algorithm

    Qazi, Abroon Jamal / Farooqui, Umar A. / Khan, Afzal et al. | Tema Archiv | 2013


    Particle Swarm Optimization Algorithm

    Chen, G.-c. / Yu, J.-s. | British Library Online Contents | 2005


    Compact Particle Swarm Optimization Algorithm

    Yu, L. / Zheng, Q. / Zhewen, S. | British Library Online Contents | 2006