Chinese air traffic passenger volumes have experienced phenomenal growth during the past years. The air traffic volume prediction plays a key role in air traffic flow management system. This paper develops a hybrid model of Neural and Grey Theory for air traffic passenger volume forecasting. The Grey theory is adopted to fit the air traffic data patterns and make the data a higher regularity, and Radical basis function is combined to raise the forecasting accuracy. The model is tested with the Chinese civil aviation passenger volume data from 1998 to 2007 and the result shows that the model is feasible for practical implementations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Hybrid Model of Neural Network and Grey Theory for Air Traffic Passenger Volume Forecasting



    Erschienen in:

    Key Engineering Materials ; 439-440 ; 818-822


    Erscheinungsdatum :

    07.06.2010


    Format / Umfang :

    5 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Forecasting elevator passenger traffic

    KUUSINEN JUHA-MATTI / SIIKONEN MARJA-LIISA / KOKKALA JUHO | Europäisches Patentamt | 2022

    Freier Zugriff

    Forecasting International Airline Passenger Traffic Using Neural Networks

    Nam, K. / Schaefer, T. | British Library Online Contents | 1995


    FORECASTING ELEVATOR PASSENGER TRAFFIC

    KUUSINEN JUHA-MATTI / SIIKONEN MARJA-LIISA / KOKKALA JUHO | Europäisches Patentamt | 2019

    Freier Zugriff

    FORECASTING ELEVATOR PASSENGER TRAFFIC

    KUUSINEN JUHA-MATTI / SIIKONEN MARJA-LIISA / KOKKALA JUHO | Europäisches Patentamt | 2019

    Freier Zugriff