The next generation of tall structures are being designed to be lighter and more flexible making them susceptible to wind, ocean waves and earthquake type of excitations. One approach to vibration control of such systems is through energy dissipation using a liquid sloshing damper. Such dampers are already in use for vibration control of tall structures in Japan and Australia. The present parametric study focuses on enhancing the energy dissipation efficiency of a rectangular liquid damper through introduction of a two-dimensional obstacle. A parametric free vibration study, aimed at optimum size and location of the obstacle, is described first. Results suggest a significant increase in the energy dissipation, up to 60%, in presence of the obstacle. An extensive wind tunnel test-program was undertaken which substantiated effectiveness of the improved damper in suppressing both vortex resonance and galloping types of instabilities. Ability of the damper to control structural oscillations with less amount liquid is quite attractive for real-life applications.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Efficient liquid sloshing damper for vibration control


    Beteiligte:
    Modi, V.J. (Autor:in) / Munshi, S.R. (Autor:in)


    Erscheinungsdatum :

    1998


    Format / Umfang :

    8 Seiten, 26 Quellen


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    An efficient liquid sloshing damper for vibration control

    Modi, V.J. / Munshi, S.R. | Tema Archiv | 1998



    Liquid Sloshing in Microgravity

    Luppes, Roel / Helder, Joop A. / Veldman, Arthur E.P. | AIAA | 2005



    Liquid sloshing in elastic containers

    Bauer, Helmut F. / Hsu, Teh-Min / Wang, James Ting-Shun | TIBKAT | 1967