The aeroelastic scaling problem is revisited and it is shown that classical aeroelastic scaling relations, developed for flutter, need to be extended when dealing with modern aeroelastic applications, involving controls and adaptive materials based actuation. For such problems a novel two pronged approach is presented that produces refined aeroelastic scaling laws by a judicious combination of the classical approach with more sophisticated computer simulations. It is also shown that the rotary-wing equivalent to fixed-wing aeroelastic scaling, based on typical cross-section concepts, is the offset hinged spring restrained blade model. Scaling laws for the rotary-wing aeroelastic and aeroservoelastic problem are obtained. These scaling requirements imply that scale model tests, conducted on small models intended to demonstrate active control of vibration using adaptive materials based actuation, use very flexible models that often disregard aeroelastic scaling. Thus, the extension of these results to the full scale configuration is difficult.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Rotary-wing aeroelastic scaling and its implications for adaptive materials based actuation


    Beteiligte:


    Erscheinungsdatum :

    1999


    Format / Umfang :

    20 Seiten, 55 Quellen




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch





    Rotary-Wing Aeroelastic Scaling and its Application to Adaptive Materials Based Actuation

    Friedmann, P. P. / Association Aeronautique et Astronautique de France | British Library Conference Proceedings | 1998


    Rotary-Wing Aeroelastic Scaling and Its Application to Adaptive Materials Based Actuation

    Friedman, P. P. / AIAA / ASME et al. | British Library Conference Proceedings | 1998