Fuzzy clustering is applied to the problem of detecting landmines. Sensor data generated by a Ground Penetrating Radar (GPR) is processed to detect the mines. The GPR produces a three dimensional array of intensity values, representing a volume below the surface of the ground. Features are computed from this array and clustered using a fuzzy competitive agglomerative (CA) algorithm. Prototypes are produced by the clustering algorithms and used to detect landmines. A novel aspect of this work is that the prototypes are not used in a nearest prototype style classifier, which would be the standard approach. Rather, the prototypes are used to provide a reliable indicator of the strength and pattern of a return at a location beneath the surface. Results on real, difficult data are provided that indicate that the fuzzy clustering produces more reliable detection outputs. In particular, the false alarm rates are much lower than those of the existing system.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fuzzy clustering for land mine detection


    Beteiligte:
    Frigui, H. (Autor:in) / Gader, P. (Autor:in) / Keller, J. (Autor:in)


    Erscheinungsdatum :

    1998


    Format / Umfang :

    5 Seiten, 8 Quellen




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch





    Target tracking for land mine detection

    Kacelenga, Ray / Berube, Adrien | SPIE | 2002


    Temporal analysis for land mine detection

    Linderhead, A. / Sjokvist, S. / Nyberg, S. et al. | Tema Archiv | 2005


    Multispectral image feature selection for land mine detection

    Clark, G.A. / Sengupta, S.K. / Aimonetti, W.D. et al. | Tema Archiv | 2000


    Land mine detection with an ultra-wideband SAR system

    Andrieu, J. / Gallais, F. / Mallepeyre, V. et al. | Tema Archiv | 2002