Traffic incident detection involves both the collection and analysis of traffic data. The paper discusses the development of a novel time-indexed traffic anomaly detection algorithm. A unique partition of time into the "type of day", and "time of day" is performed. Using this partition, a novel fuzzy neuromorphic unsupervised learning algorithm is used to calibrate the "normal" and "abnormal" for each descriptor. Fuzzy composition techniques are used, on a per lane basis, to fuse multiple traffic descriptors in order to determine membership in "normal" or "abnormal" lane status. Then, each lane status is fused to determine an over all road segment status. Initial training of the algorithm takes place during the first few weeks after the sensor is installed. Online background training continues thereafter to continually tune and track seasonal changes.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Detection of traffic anomalies using fuzzy logic based techniques


    Beteiligte:
    Weil, R. (Autor:in) / Garcia-Ortiz, A. (Autor:in) / Wootton, J. (Autor:in)


    Erscheinungsdatum :

    1998


    Format / Umfang :

    6 Seiten, 15 Quellen




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Urban Traffic Density Decongestion Using Neural Networks and Fuzzy Logic Techniques

    Samrudh, K / Tusu, Satyam / Shettar, Rajashree | IEEE | 2017


    Traffic signal control using fuzzy logic

    Prontri, Sakuna / Wuttidittachotti, Pongpisit / Thajchayapong, Suttipong | IEEE | 2015


    Traffic signal control using fuzzy logic

    Lin, Qinghui / Kwan, B.W. / Tung, L.J. | Tema Archiv | 1997