The attitude control of a satellite is often characterized by a limit cycle, caused by measurement inaccuracies and noise in the sensor output. In order to reduce the limit cycle, a nonlinear fuzzy controller was applied. The controller was tuned by means of reinforcement learning without using any model of the sensors or the satellite. The reinforcement signal is computed as a fuzzy performance measure using a noncompensatory aggregation of two control subgoals. Convergence of the reinforcement learning scheme is improved by computing the temporal difference error over several time steps and adapting the critic and the controller at a lower sampling rate. The results show that an adaptive fuzzy controller can better cope with the sensor noise and nonlinearities than a standard linear controller.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive fuzzy control of satellite attitude by reinforcement learning


    Beteiligte:
    Buijtenen, W.M. van (Autor:in) / Schram, G. (Autor:in) / Babuska, R. (Autor:in) / Verbruggen, H.B. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    1998


    Format / Umfang :

    10 Seiten, 14 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch




    Adaptive satellite attitude control for varying masses using deep reinforcement learning

    Retagne, Wiebke / Dauer, Jonas / Waxenegger-Wilfing, Günther | DataCite | 2025

    Freier Zugriff



    Deep Reinforcement Learning for Rendezvous and Attitude Control of CubeSat Class Satellite

    Tammam, Abdulla / Zenati, Abdelhafid / Aouf, Nabil | IEEE | 2023


    REINFORCEMENT LEARNING FOR SPACECRAFT ATTITUDE CONTROL

    Vedant, Fnu / Allison, James / West, Matthew et al. | TIBKAT | 2020