In this article, the authors face the problem of navigating a mobile robot on an indoor environment, where the location and shape of obstacles is assumed to be initially unknown to the robot. They describe an approach for simultaneous learning of a world model, and learning to navigate from a start position to a goal region on the world. These two learning abilities may be seen as cooperating and enhancing each other in order to improve the overall system performance. It is assumed that the robot knows its own current world position. It is only additionally assumed that the mobile robot is able to perform sensor-based obstacle detection (not avoidance), and that it is able to perform straight-line motions. Results of simulation experiments are presented that demonstrate the effectiveness of the approach to navigate a Nomad 200 mobile robot.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Path planning-by-learning with a Nomad 200 mobile robot


    Beteiligte:
    Araujo, R. (Autor:in) / Almeida, A.T. de (Autor:in)


    Erscheinungsdatum :

    1997


    Format / Umfang :

    6 Seiten, 7 Quellen




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Chevrolet NOMAD

    Online Contents | 2004


    Test: Ariel Nomad

    Prior,M. / Cackett,N. / Ariel,GB | Kraftfahrwesen | 2015


    Stretched Nomad Demonstrated

    Emerald Group Publishing | 1976


    Zitatenschatz : Chevrolet Nomad

    Lingner,H. / General Motors,Chevrolet Motor Div.,US | Kraftfahrwesen | 2004


    Zoom: Chevrolet Nomad

    Meurer,S. / General Motors,Chevrolet Div.,US | Kraftfahrwesen | 2004