A neural network that limits the closest point of approach of an autonomous underwater vehicle (AUV) with respect to a navigation obstacle is described. Neural network inputs consist of beam outputs from a forward-looking sonar, and differences between current and desired values for AUV course and speed are inputs to normal navigation and control. The neural network outputs are AUV rudder angle and propulsion power: basic vehicle maneuvering characteristics are incorporated in the model. Obstacle avoidance is accomplished using a proximity detector for avoiding static obstacles and a rate detector for avoiding moving obstacles. The detections are made using 2D masked binary filters implemented as multilayer neural networks in the classification mode. Adaptive training is not used: instead. neuron weights are defined by the desired AUV response. The AUV simulation successfully avoided collision with all obstacles during test runs.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen


    Exportieren, teilen und zitieren



    Titel :

    Obstacle avoidance using neural networks


    Weitere Titelangaben:

    Unterwasserfahrzeug-Navigation mittels nervenähnlicher Netze zur Vermeidung von Zusammenstößen


    Beteiligte:
    DeMuth, G. (Autor:in) / Springsteen, S. (Autor:in)


    Erscheinungsdatum :

    1990


    Format / Umfang :

    3 Seiten, 2 Quellen


    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Obstacle avoidance using fuzzy neural networks

    Liu, Xuemin / Liang Peng / Li, Jiawei et al. | Tema Archiv | 1998



    OBSTACLE AVOIDANCE DEVICE, OBSTACLE AVOIDANCE SYSTEM AND PROGRAM

    ENAMI EIJI | Europäisches Patentamt | 2017

    Freier Zugriff

    Chassis obstacle avoidance system and obstacle avoidance method

    ZHANG GENGJIA / XIAO KUAN / ZHAO WENFENG et al. | Europäisches Patentamt | 2023

    Freier Zugriff