In this paper it is argued that optimizing radar detection performance in a changing environment by selecting appropriate waveform parameters is not an easy task. The problem of evaluating radar performance has been solved by using a computer model called CARPET. However, using CARPET for adaptive selection of waveform parameters presents some problems due to excessive computation times. The approach proposed in this paper which employs a neural network to predict radar performance and the simulated annealing technique to select the optimum waveform parameters looks feasible. Further experiments will be carried out to investigate the optimum selection under different propagation conditions. Especially the effects of jamming and ducting will be investigated.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive waveform selection with a neural network


    Weitere Titelangaben:

    Adaptive Auswahl von Wellenformen mit einem neuronalen Netz


    Beteiligte:
    Huizing, A.G. (Autor:in) / Spruyt, J.A. (Autor:in)


    Erscheinungsdatum :

    1992


    Format / Umfang :

    3 Seiten, 5 Bilder, 1 Tabelle, 5 Quellen




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Adaptive waveform selection for multistatic target tracking

    Ngoc Nguyen / Dogancay, Kutluyil / Davis, Linda | IEEE | 2015


    Universal Learning Waveform Selection Strategies for Adaptive Target Tracking

    Thornton, Charles E. / Buehrer, R. Michael / Dhillon, Harpreet S. et al. | IEEE | 2022


    Constrained Contextual Bandit Learning for Adaptive Radar Waveform Selection

    Thornton, Charles E. / Buehrer, R. Michael / Martone, Anthony F. | IEEE | 2022


    A Radar System With Adaptive Waveform Selection Against Dynamic Spoofing Attacks

    Xie, Chao / Liu, Guanghua / Xu, You et al. | IEEE | 2025


    On Dynamic Adaptive Selection Method for Neural Network Ensemble

    Zhang, D.-b. / Wang, Y.-n. | British Library Online Contents | 2007