In order to diagnosis the aero-engine multi-redundant smart sensors, a method based on data fusion was proposed. In this method, an improved fuzzy C-means clustering algorithm was used to get a fusion value based on multisensing units' information, and then the residuals between the fusion value and measured values of the sensing units could be calculated. After that, the residuals could be used to monitor the health conditions of the sensors. The simulation results showed that the fusion value has a high accuracy, and the absolute error is less than 0.5 °C, and also online sensing units fault location could be completed in the form of fault vector.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fault Diagnosis for Aero-engine Multi-redundant Smart Sensors Based on Data Fusion


    Beteiligte:
    Zhai, Xusheng (Autor:in) / Yang, Shimei (Autor:in) / Li, Gang (Autor:in) / Jia, Jianming (Autor:in)


    Erscheinungsdatum :

    2014


    Format / Umfang :

    13 Seiten





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Fault fusion diagnosis of aero-engine based on deep learning

    Che, Changchang / Wang, Huawei / Ni, Xiaomei et al. | British Library Online Contents | 2018


    Fault diagnosis for sensors and components of aero-engine

    Yebo, L. / Qiuhong, L. / Xianghua, H. et al. | British Library Online Contents | 2013



    Aero engine gas path fault prediction based on multi-sensor information fusion

    Yang Xiaohong / Guo Haifeng / Zhang Jing et al. | IEEE | 2016


    Data-Driven Equivalent Space Aero-Engine Sensor Robust Fault Diagnosis

    Song, Yixiao / Gou, Linfeng / Zhang, Meng et al. | IEEE | 2023