Traffic flow sampled data is noisy and chaotic time series. Complex noise component affects the traffic flow predictability. In this paper, it used multi-scale noise reduction based on wavelet/wavelet packet to shield the traffic flow’s noise components interference in deterministic component. It aimed at the contradiction between similarity and predictability in traffic flow noise reduction process, then proposed multi-state threshold method. Experimental results show that, compare with the traditional threshold value method, the threshold method can more effectively extract the traffic flow’s effective information. This method not only made traffic flow which is reduced noise higher goodness of fit, and the prediction accuracy is higher than the traditional threshold methods, thereby we can significantly enhance prediction performance.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-Scale Noise Reduction Based Wavelet


    Beteiligte:
    Li, Rui-Xian (Autor:in)


    Erscheinungsdatum :

    2014


    Format / Umfang :

    6 Seiten




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Wavelet transform-based approach for interferometric SAR image noise reduction

    Yuan, Y. / Hu, Q. / Mao, S. | British Library Online Contents | 1999


    Wavelet-based method for speckle noise reduction in TV holography fringes

    Odegard, J. E. / Kaufmann, G. H. / Davila, A. et al. | British Library Conference Proceedings | 1996


    Saliency analysis based on multi-scale wavelet decomposition

    Xiaolong Ma, au / Xudong Xie, au / Kin-Man Lam, au et al. | IEEE | 2013



    FM multi-path noise reduction

    Takayama,K. / Sugahara,S. / Tanaka,O. et al. | Kraftfahrwesen | 1988