The paper presents implementation of PSO (Particle Swarm Optimization) to ANN-based speed controller tuning. Selected learning parameters are optimized according to the control objective function. A battery electric vehicle is considered as a potential plant for an adaptive speed controller. The need for adaptivity in the control algorithm is justified by variations of a total weight of the vehicle. A sizable section of the paper deals with selection of a combined objective function able to effectively evaluate the quality of a solution.


    Zugriff

    Zugriff über TIB

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Particle swarm optimization of artificial-neural-network-based on-line trained speed controller for battery electric vehicle


    Beteiligte:
    Ufnalski, B. (Autor:in) / Grzesiak, L.M. (Autor:in)


    Erscheinungsdatum :

    2012


    Format / Umfang :

    7 Seiten, 21 Quellen




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Print


    Sprache :

    Englisch






    A Traffic Forecasting Model Using Adaptive Particle Swarm Optimization Trained Neural Network

    Xu, Rong / Zhou, Dong / Jiang, Shizheng et al. | British Library Online Contents | 2015


    Bus Arrival Time Prediction Using Wavelet Neural Network Trained by Improved Particle Swarm Optimization

    Yuanwen Lai / Said Easa / Dazu Sun et al. | DOAJ | 2020

    Freier Zugriff

    An On-Line Trained Adaptive Neural Controller

    Zhang, Y. / Sen, P. / Hearn, G. E. | British Library Online Contents | 1995